

Biochar and Bioenergy

Colorado State University July 3, 2019

CARBON MATH

Kathleen Draper Ithaka Institute for Carbon Intelligence

Albert Bates

Global Village Institute

for appropriate technology

b) Projected global temperature change and modeled responses to stylized anthropogenic emission and forcing pathways

Global warming relative to 1850-1900 (°C)

NEGATIVE EMISSIONS TECHNOLOGIES

after FUSS 2018

Number of peer-reviewed articles on Negative Emissions Technologies 1990-2015

- changes to land use management
- accelerated weathering
- marine flora
- bioenergy with carbon capture and storage (BECCS)
- direct air capture (DAC)

Direct Air Capture and Carbon Storage (DACCS)

Artificial Tree

Deep Geological Storage

Actual Tree

Biochar is using fire to remove carbon from the atmosphere, turning it into coal and burying it in the ground for thousands of years.

Biochar supports food, water, shelter and financial security.

Summary of Biomass Availability Scenarios

Feedstock	Biomass availability in scenario (Pg yr-1)					
	Alpha		Beta		MSTP	
	DM	C	DM	С	DM	C
Cereals excluding rice	0.17	0.07	0.29	0.13	0.42	0.18
Rice	0.52	0.22	0.60	0.25	0.67	0.28
Sugar cane	0.20	0.09	0.24	0.11	0.27	0.13
Manure	0.31	0.10	0.45	0.14	0.59	0.19
Biomass crops	0.63	0.30	0.94	0.60	1.25	0.60
Harvested wood	0.05	0.03	0.13	0.07	0.21	0.10
Forestry residues	0.29	0.14	0.29	0.14	0.29	0.14
Agroforestry	0.13	0.06	0.70	0.34	1.28	0.62
Green waste	0.01	0.004	0.05	ممع	0.07	0.04
Total	2.3	1.0	3.7	1.6	5.1	2.3

JE Amonette 08Nov2010

CO2 removed returned photosynthesis **IMPACT** OUTPUTS APPLICATIONS INPUTS biofuel CO₂ emissions bio-oil syngas energy process heat other cereals **PROCESS** sugar cane avoided avoided fossil CO2 avoided manures soil biomass decay emissions avoided CH₄/N₂O biomass crops pyrolysis soil stored C biochar amendment agroforestry oxidation, soil C tillage, transport felling losses enhanced primary productivity

Woolf-Amonette 2010

Biochars are to be made "Fit for Purpose"

Courtesy T.A. Miles

Bates & Draper, Annual Meeting of the Society for Biophysical Economics, 2018

NEW ECONOMY

"It's not the Industrial Revolution but its a carbon copy."

Who buys Biochar? Where are present markets?

Agriculture, Retail Garden, Landscape, Turf, Horticulture Farm and Consumer products

Biochar, Compost

Composted biochar (5%-20% biochar)

Biochar-Based Compound Fertilizers (15%-25% biochar)

Biotic Soil Amendments(biochar + organics+ minerals and biologicals)

Granulated products for hydro-seeding

Environment, Remediation, Erosion Control

Forest Fuels and Reforestation

Sewage Treatment, Solids and Odor

Mine reclamation, Oilfield remediation, Filtration

Stormwater filtration, water treatment

Non-soil carbon product

animal feed, building products, odor control, food

Courtesy T.A. Miles

Do the Math

CURRENT Anthropogenic CO2-e/y in gigatonnes: 40

Construction aggregate displacement

Global cement production by weight (2017): 53

Convert 20% to biochar: 10.6

With 82% C content: 8.7

CO2-e drawdown potential: **31.9**

CO2-e emissions reduction from cement production: 3.8

Sand displacement

Global sand mining: 15

Replace one third with biochar: 5

With 82% C content: 4.1

CO2-e drawdown potential: 15

CO2-e abated from sand mining & transport: unknown

Asphalt displacement

Global asphalt production by weight (2017): 2.5

Convert 20% to bio-oils, biochar, or pyrolysates: 0.5

CO2-e drawdown potential: 1.8

CO2-e emissions reduction from avoided mining: unknown

POTENTIAL CO2-e/y drawdown in gigatonnes: 48.7

Cascaded Construction: A Fresh Foundation

Spent minerals recovery media added to concrete

Spent filtration media used for mine tailings minerals recovery

Biochar used for filtration media

Biochar concrete — "charcrete" — in buildings and roads

Materials continue to sequester even after deconstruction

Soil enrichment with biochar

Biochar made from sewage sludge

Nicaragua Biochar Roof Tiles Project

- Mix all dry ingredients thoroughly
- Add water as needed
- Add concrete or polymer mix to flat tile mold
- Vibrate to remove air bubbles

- Transfer tile onto curved mold using plastic sheet
- It takes ~2 weeks for the tile to cure

Simple hardscaping for climate adaptation

Stockholm Biochar Streets Project

Stone chips / crushed granite (2-6mm)

6/8 volume parts

+ nutrient-enriched biochar

1/8 volume parts

+ compost

1/8 volume parts

Stockholm Biochar Streets Project

Several problems — with a common solution

WITH BIOCHAR:

- Trees stopped dying, grew 10x faster and in difficult locations
- 2. City reduced the risk of flooding from extreme storm events
- 3. Cleaned street water effluent before it polluted Baltic, saving nitrogen and potassium
- 4. Reduced the presence of particles and carbon dioxide in the air
- 5. Reduced the heat island effect
- 5. Locked carbon into the ground, meeting the Paris goals

A cascade of solutions from a single strategy

Paints and Plasters

- Decrease weight, increase compression & flexural strength, fire resistance, electromagnetic shielding, humidity control, insulation
- Improved longevity, durability, heat resistance, rutting resistance.

Biochar Biocomposites

Adding a little biochar to almost anything helps sequester carbon!

Filtration Nation

Water

- Prevention of Contamination
- Decontamination

Soils

- Reclamation
- Immobilization
- Retention

Removal of E.coli, fecal coliforms, lead, cadmium, arsenic...

Petroleum Flip-Flop: the Displacement Strategy

Carbon Black Activated Carbon Think: spider silk!

Rubber soles Tires

Dry batteries

Inks

Carbon Comfort: Reimagining Everyday Life

Dr. N. Sai Bhaskar Reddy e-geo.org | biocharindia.com

What could they be targeting?

Pets, Personal Care, Pillows, Paints & Plasters

My Tesla Runs on Banana Peels

Energy Storage

- SuperCaps
- Lithium sulfur

3D printed precursors from biomass

After carbonization

Low density of 0.74 g/cm³

Important porosity of 0.58

Electrical conductivity of 47.8 S/cm

Elastic modulus of 6.62 GPa

https://chembites.org/2018/11/14/making-new-batteries-usingburnt-plants/

https://ars.els-cdn.com/content/image/1-s2.0-S1359836818309661-fx1_lrg.jpg

Carbon Math

Sources

Safe, Shovel
Ready,
Scalable
Sinks

Burden

CURRENT

- Fossil Carbon: Coal, Petroleum, Gas
- Industrial Agriculture; Land Use Change
- Built Environment; Cement, Alloys,
 Plastics
- Linear Economy: Industrial Pollution;
 Landfills, Solid Wastes, Disposal by decay
 (CH4) or burning (CO2)

- Photosynthetic Carbon:
 - Forests
 - Crops
 - seaweed
- Soil Carbon

FIXED

- Photosynthetic Carbon: forests, crops, seaweed
- Secondary photosynthetic Carbon: sludges, manures, woody wastes

Biochar

China expands fertilizers made from crop waste

2018: 200,000 tons

National Waste & Recycling Association
Collect. Recycle. Innovate.

China creates ecovillages near biorefineries

It is technologically possible to redeem the atmosphere to its pre-industrial condition, but only by following these specifications:

- low-cost
- rapidly deployable
- hugely scalable
- capable of quick political and social acceptance
- without the requirement of carbon taxes or offset market subsidies
- antifragile
- have adequate incentives to function in the absence of the petroleum economy
- not endanger ecosystems
- not impoverish individuals, sectors or countries.

PARADIGM SHIFT

* One of only 6 negative emissions technologies the IPCC believes can materially help rebalance carbon.

Please support our continuing research and development of these exciting solutions!

Albert Bates Kathleen Draper

